On 2nd of September Dagmara took part in Life Sciences event for schools which took place at Perth High School. Her series of workshops on ELISA technique were attended by over 100 pupils aged 12-17.
Zinc controls RyR2 activity during excitation-contraction coupling
Read our auto-commentary here:
Gordon Conference – Cell biology of Metals 2015
Cell Biology of Metals, Gordon Research Conference, 26-31 July 2015
Dr Samantha Pitt would like to thank Profs Amy Palmer and Dennis Thiele for putting together such an exciting programme.
Samantha Pitt presented her work looking at how “Zinc Modulates Cardiac Ryanodine Receptor Function Resulting to Altered Intracellular Ca(II)-Dynamics”
BHF-funded PhD Studentship Available! closing date 28/8/15
A BHF-funded PhD studentship characterising zinc-dependent heparin neutralisation by fibrinogen and histidine-rich glycoprotein is available in the laboratories of Dr Alan Stewart And Dr Sam Pitt. Full details and instructions on how to apply are available here.
Travel Award for Dagmara to attend EMDS Meeting
Dagmara Wiatrek has been awarded £400 from the European Macrophage and Dendritic Cell Society (EMDS) to attend their annual meeting in Krakow, Poland in September. Dagmara will present part of her PhD studies at the meeting relating to zinc transporter expression in dendritic cells .
Physiology 2015
Vacancy: Research Assistant required! closing date: 31/7/15
The Stewart lab has an opening for a Research Assistant in Biochemical Ophthalomology for a period of 24 months. For details of the post and how to apply see the link.
Intracellular zinc modulates cardiac ryanodine receptor-mediated calcium release
Cardiac excitation-contraction (EC) coupling, a process which governs contractility of the heart, depends on the controlled release of calcium ions (Ca2+) from the sarcoplasmic reticulum (SR) through specialised Ca2+-release channels called type-2 ryanodine receptors (RyR2). RyR2 plays a pivotal role as the main pathway for the release of Ca2+, driving cellular contraction. Consequently, dysfunction in the release of Ca2+ through these channels and the modulatory influences which control RyR2 function have been identified as contributory to the pathophysiology of heart failure and fatal cardiac arrhythmias.
Very recently a link between elevated levels of intracellular zinc and heart disease has been highlighted, but very little is understood regarding the role of zinc in the heart. In this latest publication in The Journal of Biological Chemistry the Pitt group show that Zn2+ is a high affinity regulator of RyR2 displaying three modes of operation. Picomolar free Zn2+ concentrations potentiate RyR2 responses but channel activation is still dependent on the presence of cytosolic Ca2+. At concentrations of free Zn2+ >1 nM, Zn2+ is the main activating ligand and the dependency on Ca2+ is removed. Zn2+ is therefore a higher affinity activator of RyR2 than Ca2+. This work suggest that RyR2-mediated Ca2+-homeostasis is intimately related to intracellular Zn2+ levels providing a mechanistic explanation linking altered Zn2+ homeostasis to cardiac RyR2 function.The data presented represents a shift in our understanding of how RyR2 is activated during EC coupling and indicates that channel dysregulation, through aberrant Zn2+ homeostasis, is likely to play a fundamental role in the generation of heart failure and other arrhythmic diseases. Full text is available online.
Fight for Sight Grant Award
A research grant of £110,951 has been awarded to Dr Alan Stewart and Dr Imre Lengyel (UCL Institute of Ophthalmology) from Fight for Sight to carry out a new 2-year study entitled “Identifying the hydroxyapatite interactome: clarifying the involvement of serum proteins in the formation of sub-retinal pigment epithelial (RPE) deposits”. A major feature of the ageing retina is the thickening of Bruch’s membrane and the formation of sub-retinal pigment epithelial (RPE) deposits that can block metabolic exchange between the choroidal blood circulation and the retina leading to sensory retinal degeneration and eventually to age-related macular degeneration (AMD), a major cause of visual impairment and blindess in older adults (>50 years). Recently, Thompson et al. reported the existence of small (0.5-20 μm diameter) protein-binding hydroxyapatite (HAP) spherules within sub-RPE deposits isolated from AMD-affected individuals (see link). This suggests that the spherules may provide nucleation sites for sub-RPE deposit formation, where the initiation, growth and retention of deposits are controlled by the binding of proteins present in the sub-RPE space to the spherules. In the funded study, HAP-binding proteins in the plasma of genotyped late-stage AMD patients will be isolated and quantitatively identified and biochemically characterised.
An Introduction to Molecular Biology – The Physiological Society
The Physiological Society, Techniques Workshop – An Introduction to Molecular Biology, UCL, 14-17 april 2015.
Ben and Gavin found the course very informative and enjoyable. The techniques learned have already been used in the lab!
Ben and Gavin would like to thank, the Physiological Society and the course organisers specifically Caroline Pellet-Many who coordinated the whole week.